Community Vulnerability to Landslides in Bangladesh

BAYES AHMED

Institute for Risk and Disaster Reduction
Department of Earth Sciences
University College London (UCL)
Gower Street, London WC1E 6BT
United Kingdom (UK)

This thesis is submitted for the degree of Doctor of Philosophy (PhD)
at University College London (UCL)

September 2017
Declaration

I, Bayes Ahmed confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.

Total Word Count = 98,557
Total Word Count (without references and appendices) = 88,475

Signature: ________________________________

BAYES AHMED

Date: 11 September 2017
Abstract

Landslides are a common hazard in the Chittagong Hill Districts (CHD) of Bangladesh. The communities that live on dangerous hill slopes in CHD repeatedly experience landslide hazards during the monsoon season, with casualties, economic losses and property damage. Although landslides are hazard events triggered by a variety of environmental phenomena, vulnerability emerging from a social system is predominantly responsible for disasters. With this background, this study develops an understanding of the root-causes of community vulnerability to landslides in the CHD.

To begin, two distinct groups of communities were identified, namely the urbanized hill communities and the indigenous hill communities. Seven urbanized and four indigenous communities were selected and compared by developing and applying mixed methods. Quantitative information from household-level questionnaires was associated with qualitative maps and diagrams from participatory rural appraisal surveys. A convergent parallel design and index based weighted average decision support model was applied, covering community-level vulnerability indicators for physical, social, economic, ecological, institutional and cultural aspects.

The urbanized hill communities were found to be highly vulnerable to landslides, as they are attracted by city pull factors, deprived of social justice and involved in indiscriminate hill cutting for developing settlements. They fail to incorporate indigenous knowledge and are culturally less aware of how to deal with hazard extremes in the hilly environment. In contrast, the indigenous communities have a distinctive history and culture, inherited lifestyle, customs, beliefs and values, traditional housing pattern, land tenure and ownership, administrative system, and agricultural practice as a major livelihood. These unique characteristics are facilitating the indigenous communities to address the different dimensions of community vulnerability to landslides.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>2</td>
</tr>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>4</td>
</tr>
<tr>
<td>List of Figures</td>
<td>10</td>
</tr>
<tr>
<td>List of Tables</td>
<td>20</td>
</tr>
<tr>
<td>List of Acronyms</td>
<td>25</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>27</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>28</td>
</tr>
<tr>
<td>1.1. Background</td>
<td>28</td>
</tr>
<tr>
<td>1.2. Landslides in the Chittagong Hill Districts</td>
<td>30</td>
</tr>
<tr>
<td>1.2.1. The Urbanized Hill Communities</td>
<td>32</td>
</tr>
<tr>
<td>1.2.2. Landslides and Institutional Aspects</td>
<td>35</td>
</tr>
<tr>
<td>1.2.3. The Indigenous Hill Communities</td>
<td>41</td>
</tr>
<tr>
<td>1.3. Research Hypothesis</td>
<td>41</td>
</tr>
<tr>
<td>1.4. Research Aim and Objective</td>
<td>42</td>
</tr>
<tr>
<td>1.5. Originality and New Knowledge</td>
<td>43</td>
</tr>
<tr>
<td>1.6. Structure of the Thesis</td>
<td>44</td>
</tr>
<tr>
<td>Chapter 2: Literature Review</td>
<td>47</td>
</tr>
<tr>
<td>2.1. Terminologies</td>
<td>47</td>
</tr>
<tr>
<td>2.2. The Essence of Vulnerability Research</td>
<td>49</td>
</tr>
<tr>
<td>2.3. Conceptual Framework of DRR</td>
<td>50</td>
</tr>
<tr>
<td>2.3.1. The Pressure-and-Release Model</td>
<td>51</td>
</tr>
<tr>
<td>2.3.2. The Vicious Circle of Increases in Vulnerability</td>
<td>51</td>
</tr>
<tr>
<td>2.3.3. Coupled Human-Environment Systems</td>
<td>52</td>
</tr>
<tr>
<td>2.3.4. Social Vulnerability to Climate Change and Extremes</td>
<td>52</td>
</tr>
<tr>
<td>2.3.5. The Disaster Resilience of Place Model</td>
<td>53</td>
</tr>
</tbody>
</table>
2.3.6. The Hazards of Place Model of Vulnerability 54
2.3.7. The Causal Structure of Vulnerability 54
2.3.8. The Double Structure of Vulnerability 55
2.3.9. Framework for Disaster Risk Reduction 55
2.3.10. The 'BBC' Conceptual Framework 56
2.3.11. Framework to Assess Climate Change-Induced Risks 56
2.3.12. The MOVE Framework 57

2.4. Approaches to Vulnerability and Resilience 58
2.5. Social Scales in DRR Research 63
2.6. The Concept of Community in DRR 65
2.7. Vulnerability Assessment Methods 68
2.8. Culture and Indigenous Knowledge in DRR 82
2.9. Research Approach 86
2.10. Participatory Research in DRR 90
2.11. Land Cover Mapping 92
2.12. Landslide Susceptibility Mapping 93
2.13. Vulnerability Assessment 94
2.14. Chapter Summary 97

Chapter 3: Methodology 98

3.1. Rainfall Pattern Analysis 98
3.2. Landslide susceptibility mapping modeling 100
 3.2.1. LSM for CHD 100
 3.2.2. LSM for Chittagong City Corporation 107
 3.2.3. LSM for Cox’s Bazar Municipality 110
 3.2.4. Model Validation 118
 3.2.5. Limitations of data collection and LSM 118
3.3. Questionnaire Surveying Method 120
 3.3.1. Sample Size and Community Selection 121
3.4. PRA Surveying 123
3.5. Comparative Vulnerability Assessment 129
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.1. Indicator Selection</td>
<td>129</td>
</tr>
<tr>
<td>3.5.2. Vulnerability Index Calculation</td>
<td>134</td>
</tr>
</tbody>
</table>

Chapter 4: Study Area – Chittagong Hill Districts | 140

- 4.1. Chittagong Hill Districts | 140
- 4.2. Physical Characteristics | 140
 - 4.2.1. Relief and Geomorphology | 140
 - 4.2.2. Drainage | 142
 - 4.2.3. Vegetation | 143
 - 4.2.4. Soils | 143
- 4.3. Population Growth | 144
- 4.4. Land Cover Pattern in CHD | 145
 - 4.4.1. Land Cover Changes | 145
 - 4.4.2. Land Cover Modelling | 148
- 4.5. Rainfall Pattern Analysis | 154
- 4.6. Landslide Mechanism in CHD | 160
- 4.7. LSM Results | 163
- 4.8. The Need for Community Vulnerability Assessment | 170
- 4.9. Summary of Findings | 173

Chapter 5: Community Profile – Chittagong City Corporation | 175

- 5.1. Chittagong City Corporation in Summary | 175
 - 5.1.1. Relief and Geology | 177
 - 5.1.2. Soils | 179
 - 5.1.3. Landslide Mechanism in CCC | 180
- 5.2. Description of Landslide Causative Factors | 181
 - 5.2.1. Rainfall Pattern of Chittagong | 181
 - 5.2.2. Changes in Land Cover | 182
- 5.3. LSM Results | 185
 - 5.3.1. Model Validation and Discussion on LSM | 189
Chapter 6: Community Profile – Cox’s Bazar Municipality

6.1. Study Area Profile 249
6.2. Physiographic and Geological Features 250
6.3. Landslide Mechanism in CBM 252
6.4. Results from LSM 253
 6.4.1. AHP and WLC Results 253
 6.4.2. Multiple Logistic Regression Results 254
 6.4.3. Validation of LSM 256
6.5. Identifying Vulnerable Communities in CBM 257
6.6. Landslide Scenario in CBM 258
6.7. Physical Environment 260
 6.8.1. Historical Profile 263
 6.8.2. Social and Resource Mapping 270
Chapter 8: Results from Questionnaire Surveying 341

Chapter 9: Comparative Analysis 388

9.1. Extracting Indicator Scores 389
9.2. Vulnerability Index Results 396
9.3. Sensitivity Analysis 396
9.4. Critical reflection and limitations of the study 399
9.5. Chapter Summary 400

Chapter 10: Conclusions and Recommendations 403

10.1. Achievements of this Thesis 403
10.2. Future Research and Recommendations 412
10.3. Final Words 418

References 419

Appendices

Appendix-I: Major landslide events in the Chittagong Hill Districts 445
Appendix-II: Landslide investigation form 449
Appendix-III: Questionnaire for landslide vulnerability assessment 453
Appendix-IV: Key informant survey questionnaire 459
Appendix-V: The major hilly sub-regions of Bangladesh 461
List of Figures

Figure 1.1. Total number of natural hazard induced disasters between 1900 and 2016. 28

Figure 1.2. Location of (a) Chittagong hill districts in Bangladesh, and (b) the urbanized and indigenous hill districts in CHD. 31

Figure 1.3. A fatal landslide event in Batali Hill, CCC on 1 July 2011. (a, b) – top view and (c, d) – bottom view. 33

Figure 1.4. Houses rebuilt in the same hazardous area after the 1 July 2011 landslide in Chittagong. 34

Figure 1.5. Reconstruction of the retention wall in Batali Hill, Chittagong. (b, c, d) top view and (a, e) bottom view. 34

Figure 1.6. Landslide vulnerable areas in Motijharna, CCC. (a, b) N-S view, and (c, d) S-N view. 35

Figure 1.7. Systematic hill cutting to build residential houses in Cox’s Bazar Municipality (CBM). 36

Figure 1.8. Flowchart showing causes of landslides in Chittagong as prepared by the Department of Environment, Chittagong Division. 37

Figure 1.9. Landuse change in Motijharna, Chittagong. 39

Figure 1.10. A cluster of highly vulnerable informal settlements at the top of Motijharna community was destroyed by the AC land office, Chittagong. 40

Figure 1.11. Indigenous hill communities in Bandarban district. 41

Figure 1.12. Thesis map. 45

Figure 2.1. Vulnerability and resilience intervention at multiple levels. 63

Figure 2.2. Interrelationship among various social levels. 64

Figure 2.3. Social and vulnerability maps prepared by the cyclone vulnerable communities in Kalapara Upazila, Patuakhali, Bangladesh. 91

Figure 3.1. The flowchart of research methodology. 99

Figure 3.2. (a) Landslide inventory, and (b) slope map of CHD. 102

Figure 3.3. (a) Aspect, (b) drainage, and distance from (c) fault-lineament and (d) hill cut map of CHD. 104

Figure 3.4. (a) Land cover (2010), (b) precipitation (1950-2010), (c) distance from major road network, and (d) soil consistency map of CHD. 105
Figure 3.5. (a) Soil moisture, (b) soil permeability, (c) stream power index (SPI), and (d) topographic wetness index (TWI) map of CHD.

Figure 3.6. (a) Landslide inventory map (zoomed), and (b) hill-cutting map of CCC.

Figure 3.7. (a) Slope, and (b) aspect map of CCC.

Figure 3.8. (a) Distance from stream network, and (b) NDVI map of CCC.

Figure 3.9. (a) Rainfall pattern map, and distance from (b) road network, (c) drainage network, and (d) existing building structure map of CCC.

Figure 3.10. (a) Geological, (b) geomorphological, (c) distance from faults and lineaments, and (d) soil moisture map of CCC.

Figure 3.11. Landslide inventory map of CBM.

Figure 3.12. (a) Average annual precipitation of Bangladesh, (b) Average annual monsoon rainfall in CBM (1950–2010).

Figure 3.13. NVDI (top left), slope (top right), and distance from stream map (bottom left) and existing road network (bottom right) map.

Figure 3.14. Distance from existing drainage network (top left) and building structure (top right), and geological (bottom left) and geomorphological (bottom right) map of CBM.

Figure 3.15. Soil moisture (left), and distance from fault and lineaments map (right) of CBM.

Figure 3.16. Convergent parallel design in a mixed methods research.

Figure 3.17. (a) Household based questionnaires, and (b) community-based PRA surveying in Batali Hill, CCC.

Figure 3.18. Draft version of a social and resource map.

Figure 3.19. Final version of a social and resource map.

Figure 3.20. Method for combining quantitative and qualitative data.

Figure 4.1. (a) Digital elevation model (DEM) map of Bangladesh, and (b) slope map of the study area (CHD).

Figure 4.2. Physiographic map of Bangladesh.

Figure 4.3. Trend of population growth rate in the CHD.

Figure 4.4. Land cover map of (a) 1990, (b) 2000, and (c) 2010; and (d) the location of major urban agglomerations in CHD.
Figure 4.5. (a) Major land cover changes; changes [gains, losses, and persistence] in (b) bare soil, (c) built-up area, (d) hill forest, (e) vegetation; and (f) all type to built-up area in CHD from 1990-2010.

Figure 4.6. Contributions to net changes in land cover types.

Figure 4.7. Land cover change pattern in CHD.

Figure 4.8. The driver variables for land cover modelling.

Figure 4.9. The transition potential maps for land cover modelling.

Figure 4.10. The predicted land cover map (2030) of CHD.

Figure 4.11. Average (a) annual and (b) monsoon rainfall pattern in Bangladesh from 1950–2010.

Figure 4.12. The predicted rainfall images (until 2099) of (a) Chittagong, (b) Cox’s Bazar, and (c) Rangamati district.

Figure 4.13. Monthly rainfall variations during the monsoon in CHD (1950–2010).

Figure 4.14. A landslide affected area in Akbarshah colony area in CCC.

Figure 4.15. A landslide affected area in Badshah Miah road, CCC.

Figure 4.16. A landslide disaster hit area in Pahartoli, CCC.

Figure 4.17. (a) Landslide inventory, and (b) slope map of CHD.

Figure 4.18. (a) Aspect, (b) drainage, and distance from (c) fault-lineaments and (d) hill cut map of CHD.

Figure 4.19. (a) National seminar on landslide DRR in BUET, Dhaka; expert opinion surveying with the (b) chief town planner, CDA; (c) chief architect and town planner, CCC; (d) director, DoE, Chittagong; (e) knowledge sharing meeting with the Motijharna community people and (f) with the CDA Chairman and CDA officials in Chittagong.

Figure 4.20. A cluster of houses located on dangerous foothills where creeping debris flow is visible in Batali Hill, CMA.

Figure 5.1. Landslides in the Lalkhan Bazaar area, Chittagong City Corporation (CCC), Bangladesh. (a) Location of vulnerable houses, (b) landslide scar, (c) landslide deposit, and (d) destroyed houses.

Figure 5.2. Location of (a) Chittagong hill districts in Bangladesh, and (b) Chittagong City Corporation (CCC) in Chittagong district.

Figure 5.3. (a) Elevation, and (b) geological map of CCC.
Figure 5.4. (a) Mode of landslide movement; (b) different states of activity; (c) distributions of activity, and (d) styles of activity in CCC.

Figure 5.5. Land cover map of CCC in (a) 1990, (b) 2000, (c) 2010, and in (d) 2015.

Figure 5.6. (a) Major land cover, and (b) built-up area changes in CCC (1990–2015).

Figure 5.7. (a) Gains and losses by land cover types, and contributions to net change in (b) bare soil, (c) vegetation, and (d) built-up area (km²) in CCC from 1990–2015.

Figure 5.8. The four principal components (a–d) derived from the landslide factor maps in CCC.

Figure 5.9. Landslide susceptibility maps applying the (a) MR with all layers, and (b) MR with PCA layers.

Figure 5.10. Assessing model performances based on the ROC curves.

Figure 5.11. (a) Location of landslides in CCC, and (b) the selected landslide clusters from CCC.

Figure 5.12. Location of Lalkhan Bazar in Chittagong City Corporation.

Figure 5.13. Location of (a) Motijharna and (b) Batali Hill community.

Figure 5.14. Location of (a) Golpahar and (b) Medical Hill community.

Figure 5.15. The landslide devastation on 19 July 2015.

Figure 5.16. Indiscriminate hill cutting for development of residential housing in Ispahani Hill, Kushumbagh, CCC.

Figure 5.17. Hill cutting soil is being transported as raw materials in the brickfields.

Figure 5.18. Brick-kiln owners are cutting hills and constructing new roads for easy transportation of the products near Salimpur, CCC.

Figure 5.19. Development of residential area by cutting hills near 9 number north Pahartali Ward, CCC.

Figure 5.20. People are being evicted from Motijharna community on 25 June 2014.

Figure 5.21. Temporary tents were provided for landslide vulnerable people in East Tiger-pass Govt. Primary School, near Batali Hill, Dobolmuring, Chittagong.
Figure 5.22. Settlements developed by cutting hills in Motijharna community, CCC. 214

Figure 5.23. (a) Blocked drain, (b) road-side drain and housing on vulnerable hill, (c) a market place, (d) waste disposal on road, (e) gas-supply at household level, and (f) road-side water supply network in Motijharna. 215

Figure 5.24. (a) Residential houses close to dangerously threatening hills, (b) settlements developed by cutting hills, (c) sand bags are used to protect the houses from landslides, (d) road cum drainage network, (e) water storage provision in tank, and (f) tin-shed housing at the top of the hill in Batali Hill community, CCC. 216

Figure 5.25. (a), (b) Residential houses developed by cutting hills, (c) drainage network cum earthen road, (d) tin-shed housing in hills, and (e) houses located close to vulnerable hills in Golpahar community, CCC. 217

Figure 5.26. (a) Typical residential housing, (b) stair-shape road and drainage network, (c) landslide vulnerable houses in dangerous slopes, (d) stair-shape earthen road network, (e) semi-built housing at the foothill, and (f) sand bags are used to protect the houses from landslides in Medical Hill. 218

Figure 5.27. Panoramic view of development of multi-storied buildings in (top) Goribullah Shah Hill, and (bottom) Ispahani Hill, Kushumbagh in CCC. 219

Figure 5.28. Social and resource map of (a) Motijharna, and (b) Batali Hill community, CCC. 222

Figure 5.29. Social and resource map of (a) Golpahar, and (b) Medical Hill community, CCC. 223

Figure 5.30. Transect map of Motijharna community (a) East-West, (b) West-East, (c) West-East, and (d) East-West direction (not to scale). 224

Figure 5.31. Transect map of Batali Hill community. 225

Figure 5.32. Transect map of Golpahar community. 226

Figure 5.33. Transect map of Medical Hill community, CCC. 226

Figure 5.34. Vulnerability map of (a) Motijharna, and (b) Batali Hill community, CCC. 228

Figure 5.35. Vulnerability map of (a) Golpahar, and (b) Medical Hill community, CCC. 229

Figure 5.36. Mobility map of (a) Motijharna, and (b) Batali Hill. 231
Figure 5.37. Mobility map of (a) Golpahar, and (b) Medical Hill community, CCC.

Figure 5.38. Venn diagram of (a) Motijharna, and (b) Batali Hill community, CCC.

Figure 5.39. Venn diagram of (a) Golpahar, and (b) Medical Hill community, CCC.

Figure 5.40. Cause-effect diagram of (a) Motijharna, and (b) Batali Hill community, CCC.

Figure 5.41. Cause-effect diagram of (a) Golpahar, and (b) Medical Hill community, CCC.

Figure 5.42. Dream map of (a) Motijharna, and (b) Batali Hill.

Figure 5.43. Dream map of (a) Golpahar, and (b) Medical Hill.

Figure 6.1. (a) Location of CBD in CHD and (b) location of CBM.

Figure 6.2. Land cover maps of CBM (1990–2015).

Figure 6.3. Development of human settlements by illegal and indiscriminate hill cutting in CBM.

Figure 6.4. Landslide susceptibility map derived from the AHP method.

Figure 6.5. Landslide susceptibility map derived from the WLC method.

Figure 6.6. Landslide susceptibility map derived from the MLR model.

Figure 6.7. Assessment of the model performances using ROC curves.

Figure 6.8. (a, b) 3-D landslide location map of CBM, and (c) location of the selected communities in CBM.

Figure 6.9. (a) Landslide rescue operation near the hilltop circuit house in CBM, (b) a road and (c) a house submerged in flood water in CBM, and (d) thatched houses damaged due to flash flooding in CBD.

Figure 6.10. Land cover pattern maps of the selected communities on (left column) 25 January 2004, and (right column) 27 January 2016. Where, (a) Badsha Ghona, (b) Boiddo Ghona, and (c) Bagh Ghona community.

Figure 6.11. Hill cutting, environmental degradation, and highly landslide-vulnerable residential houses located on dangerous hillslopes in Badsha Ghona community.
Figure 6.12. (a, b) Road construction by hill cutting, (c-e, g) development of residential houses by destroying hills, and (f) a draw-well for household water supply in Boiddo Ghona community.

Figure 6.13. (a-c) Location of vulnerable houses on risky hillslopes, (d) a step-like internal road towards the hill, (e) construction of a new paved-road, (f) administering household questionnaires (g) and community based PRA surveying in Bagh Ghona community in CBM.

Figure 6.14. Social and resource map of (a) Badsha Ghona, (b) Boiddo Ghona, and (c) Bagh Ghona community in CBM.

Figure 6.15. Transect-walk map of Badsha Ghona community (a) east to west, and (b) west to east direction.

Figure 6.16. Transect-walk map of Boiddo Ghona community (a) east to west, and (b) west to east direction.

Figure 6.17. Transect-walk map of Bagh Ghona community (a) east to west, and (b) west to east direction.

Figure 6.18. Vulnerability map of (a) Badsha Ghona, (b) Boiddo Ghona, and (c) Bagh Ghona community in CBM.

Figure 6.19. Mobility map of (a) Badsha or Bagh Ghona, and (b) Boiddo Ghona community.

Figure 6.20. Venn diagram of (a) Badsha or Bagh Ghona, and (b) Boiddo Ghona community.

Figure 6.21. Landslide cause-effect diagram of (a) Badsha Ghona, (b) Boiddo Ghona, and (c) Bagh Ghona community in CBM.

Figure 6.22. Dream map of (a) Badsha Ghona, (b) Boiddo Ghona, and (c) Bagh Ghona community.

Figure 7.1. Location of the Chittagong Hill Tracts (CHT) in the Hindu Kush Himalaya (HKH) region and in Bangladesh.

Figure 7.2. (a) A traditional temporary hill-house in a Jhum plot, and (b) a Jhum field after setting on fire in Bandarban Hill Tracts.

Figure 7.3. Landslides as a natural occurrence in the CHT.

Figure 7.4. (a) Construction of road and (b-d) development of residential settlements by cutting hills, and (e, f) local people are cutting the hills for further development in open daylight violating the existing laws in Khagrachari Municipality, Bangladesh.
Figure 7.5. Landslides due to heavy rainfall damaged the only Bandarban Municipality to Thanchi sub-district access road in July 2015.

Figure 7.6. Location of the four selected tribal communities in the CHT.

Figure 7.7. An aerial view of Ruilui Para community in Rangamati district depicting the surrounding land cover pattern in (a) 2004, and in (b) 2014.

Figure 7.8. An aerial view of Sandak Para community in Bandarban district depicting the surrounding land cover pattern in (a) 2003, and in (b) 2013.

Figure 7.9. An aerial view of Kattrol Para community in Khagrachari district depicting the surrounding land cover pattern in (a) 2007, and in (b) 2015.

Figure 7.10. An aerial view of Kalaban Para community in Khagrachari district depicting the surrounding land cover pattern in 2015.

Figure 7.11. (a) A newly built typical tribal house in hill-slope, (b) the only access road, (c, g) a non-built house in flat land, (d) water storage facility, (e) me inside a tribal house after questionnaire surveying, (f) a Chakma woman is weaving with the traditional back strap loom, and (h) a solar panel for generating electricity in Kattrol Para, Khagrachari.

Figure 7.12. (a-c) Indigenous thatched houses, (d) the water tank storing water directly from natural falls, (e) the only access road, (f) conducting PRA and questionnaire surveying, and (g) a view of the village in Kalaban Para community, Khagrachari.

Figure 7.13. (a) A view of the community, (b) a new house is being constructed in the hill slopes, (c) a thatched house, (d) a house is built on various levels of stilts to adjust with the hill slopes, (e) a cluster of tribal houses, and (f) a water tank in Ruilui Para, Rangamati, (g) Me standing in front of a traditional tribal house, and (h) a road is dissected due to landslides in Sajek, Rangamati.

Figure 7.14. (a) A scenic view of the community, (b) a cluster of tribal houses, (c, d) traditional indigenous houses, (e) thatched houses built by the roadside, (f) a household is being facilitated by a solar panel, (g) the agricultural field just beside the Sangu River, and (h) me conducting questionnaire surveying in Sandak Para community, Thanchi, Bandarban.

Figure 7.15. Social and resource map of (a) Kattrol Para, Khagrachari; and (b) Sandak Para, Bandarban community.

Figure 7.16. Social and resource map of (a) Kalaban Para, Khagrachari; and (b) Ruilui Para, Rangamati community.
Figure 7.17. Transect walk map of (a) Kattrol Para, and (b) Kalaban Para community in Khagrachari.

Figure 7.18. Transect walk map of (a) Ruilui Para, Rangamati; and (b) Sandak Para, Bandarban community.

Figure 7.19. Vulnerability map of (a) Kattrol Para, Khagrachari; and (b) Sandak Para, Bandarban community.

Figure 7.20. Vulnerability map of (a) Kalaban Para, Khagrachari; and (b) Ruilui Para, Rangamati community.

Figure 7.21. Mobility map of (a) Kattrol Para, and (b) Kalaban Para community in Khagrachari.

Figure 7.22. Mobility map of (a) Ruilui Para, Rangamati; and (b) Sandak Para, Bandarban.

Figure 7.23. Venn diagram of (a) Kattrol Para, and (b) Kalaban Para community in Khagrachari.

Figure 7.24. Venn diagram of (a) Ruilui Para, Rangamati; and (b) Sandak Para, Bandarban.

Figure 7.25. Dream map of (a) Kattrol Para, Khagrachari; and (b) Sandak Para, Bandarban.

Figure 7.26. Dream map of (a) Kalaban Para, Khagrachari; and (b) Ruilui Para, Rangamati.

Figure 8.1. (c, d) Manufactured, (g, j) semi-manufactured and (a, b, e, f, h, i) non-manufactured houses in the selected communities in CHD.

Figure 9.1. Components for landslide disaster risk reduction strategy.

Figure 10.1. (a) A house built by cutting hills vertically (90°) in the urbanized hilly areas in Cox’s Bazar Municipality, and (b, c) traditional indigenous housing in Sandak Para, Thanchi, Bandarban district, Bangladesh.

Figure 10.2. Factors affecting landslide vulnerability at social scales.

Figure 10.3. Hierarchy of various social levels to tackle landslides.

Figure 10.4. The relationship among various dimensions of community vulnerability and landslide disaster initiation in the Chittagong Hill Districts of Bangladesh.

Figure 10.5. Households devastated by landslides on the 13th June 2017 in Rangamati Sadar Upazila, Bangladesh.
Figure 10.6. (a) Proportions of urban and rural population in Bangladesh in percent of the total population, 1950 to 2050; (b) Proportions of urban population in Bangladesh as compared to the Southern Asia and Asia.

Figure 10.7. Electricity poles are being installed in the remote hills of Thanchi–Bandarban, Bangladesh.

Figure 10.8. The pathways to achieve sustainable development goals by addressing climate change impacts in Bangladesh.
List of Tables

Table 1.1. Major disasters in Bangladesh (1900–2016). 29

Table 2.1. A review of the methods used for vulnerability assessment. 69
Table 2.2. Contrasts and complementarities between quantitative and qualitative research. 89

Table 3.1. Indices for rainfall pattern analysis. 100
Table 3.2. Details of the Landsat 4-5 TM scenes of CHD. 102
Table 3.3. Land cover type for image classification. 103
Table 3.4. Details of the Landsat satellite images. 113
Table 3.5. Contents of different land cover types. 113
Table 3.6. Abbreviations for the selected communities. 120
Table 3.7. Justification for PRA tool selection. 125
Table 3.8. Justification for selecting the indicators from questionnaires. 130
Table 3.9. Justification for selecting the indicators from PRA surveying. 132
Table 3.10. Scaling of an indicator from the questionnaire. 136
Table 3.11. Scaling of an indicator from the questionnaire. 136

Table 4.1. Population growth over the years in the CHD. 144
Table 4.2. Cramer’s V for the driving variable. 152
Table 4.3. Transition probabilities for MLP_Markov modelling. 153
Table 4.4. Trends of the rainfall indices. 156
Table 4.5. Rainfall pattern at the selected stations. 156
Table 4.6. Landslide inventory (sample) in Chittagong. 161
Table 4.7. Correlation coefficients between principal components and landslide causative factors. 164
Table 4.8. Individual regression coefficients for MR_All method. 166
Table 4.9. Individual regression coefficients for MR_PCA method. 166
Table 4.10. Pairwise comparison matrix for AHP. 167
Table 5.1. Results of the soils classification.
Table 5.2. Correlation coefficients between principal components and landslide causative factors.
Table 5.3. Individual regression coefficients for MR_All method.
Table 5.4. Individual regression coefficients for MR_PCA method.
Table 5.5. Landslide hot spots in CCC.
Table 5.6. Community description of CCC.
Table 5.7. Timeline of Motijharna community, CCC.
Table 5.8. Timeline of Batali Hill community, CCC.
Table 5.9. Timeline of Golpahar community, CCC.
Table 5.10. Timeline of Medical Hill community, CCC.
Table 5.11. Pair-wise ranking of problems in Motijharna.
Table 5.12. Pair-wise ranking of problems in Batali Hill.
Table 5.13. Pair-wise ranking of problems in Golpahar.
Table 5.14. Pair-wise ranking of problems in Medical Hill.
Table 5.15. SWOT analysis of Motijharna community, CCC.
Table 5.16. SWOT analysis of Batali Hill community, CCC.
Table 5.17. SWOT analysis of Golpahar community, CCC.
Table 5.18. SWOT analysis of Medical Hill community, CCC.

Table 6.1. Pairwise comparison matrix for AHP.
Table 6.2. Factor weights for WLC analysis.
Table 6.3. ANOVA regression table for the F-test.
Table 6.4. T–test (23081) results of the individual MLR coefficients.
Table 6.5. Brief community description.
Table 6.6. Timeline for Badsha Ghona.
Table 6.7. Timeline for Boiddo Ghona.
Table 6.8. Timeline for Bagh Ghona.
Table 6.9. Pair-wise ranking of problems in Badsha Ghona.
Table 6.10. Pair-wise ranking of problems in Boiddo Ghona.
Table 6.11. Pair-wise ranking of problems in Bagh Ghona.
Table 6.12. SWOT analysis of Badsha Ghona community.
Table 6.13. SWOT analysis of Boiddo Ghona community. 286
Table 6.14. SWOT analysis of Bagh Ghona community. 287

Table 7.1. Distribution of Ethnic and Bengali Population in the CHT. 281
Table 7.2. Distribution of Tribal Population in the CHT. 282
Table 7.3. Urbanization pattern in the CHT. 292
Table 7.4. Brief community description. 298
Table 7.5. Pair-wise ranking of problems in Kattrol Para, Khagrachari. 320
Table 7.6. Pair-wise ranking of problems in Kalaban Para, Khagrachari. 320
Table 7.7. Pair-wise ranking of problems in Ruilui Para, Rangamati. 321
Table 7.8. Pair-wise ranking of problems in Sandak Para, Bandarban. 321
Table 7.9. SWOT analysis of Kattrol Para community, Khagrachari. 322
Table 7.10. SWOT analysis of Kalaban Para community, Khagrachari. 323
Table 7.11. SWOT analysis of Ruilui Para community, Rangamati. 323
Table 7.12. SWOT analysis of Sandak Para community in Bandarban. 324

Table 8.1. Family size. 350
Table 8.2. The year since when the respondent started living in this area. 350
Table 8.3. The reason the respondent is settled in this community. 351
Table 8.4. Property or house owned by the respondent. 352
Table 8.5. Owner of the property or house. 352
Table 8.6. Builder of the house. 353
Table 8.7. Household type based on building materials. 353
Table 8.8. Purpose of using the hill or the surroundings of the house or property. 354
Table 8.9. Need to travel to workplace. 355
Table 8.10. Distance to workplace. 355
Table 8.11. Distance to nearby primary school or educational facilities. 356
Table 8.12. Distance to nearby marketplace. 356
Table 8.13. Distance to nearby commercial bank or financial institutions. 357
Table 8.14. Distance to the nearest playground or open space. 358
Table 8.15. Distance to the nearest healthcare facility. 358
Table 8.16. Road condition. 359
Table 8.17. Drainage facilities. 359
Table 8.18. Water supply condition. 360
Table 8.19. Electricity facility. 360
Table 8.20. Sanitation facility. 361
Table 8.21. Gas facility. 361
Table 8.22. Gender ratio. 362
Table 8.23. Household occupation. 362
Table 8.24. Household members average age. 364
Table 8.25. Level of household education. 364
Table 8.26. Average monthly income of the household. 365
Table 8.27. Rent paid by the respondent for the land or house. 366
Table 8.28. Monthly amount paid as house or room rent. 366
Table 8.29. Financial help received from any family members. 367
Table 8.30. Remittance received from any family members. 367
Table 8.31. Borrowing micro-credits. 368
Table 8.32. Amount borrowed from the micro-finance institutions. 368
Table 8.33. Interest rate paid for borrowing micro-credits. 369
Table 8.34. Threats or problems facing living in this community or area (% of households). 369
Table 8.35. Advantages of living in this community or area. 370
Table 8.36. Problems faced if relocated or evicted. 371
Table 8.37. Problems after relocation or eviction. 372
Table 8.38. Ways to improve living standard. 372
Table 8.39. Intensity of landslide as a problem. 373
Table 8.40. People vulnerable to landslides. 374
Table 8.41. Frequency of landslide occurrences. 374
Table 8.42. Triggering causes of landslides. 375
Table 8.43. Negative impacts of landslides. 376
Table 8.44. Last landslide observed. 377
Table 8.45. Respondents' location during landslides. 378
Table 8.46. Response to landslides. 378
Table 8.47. The respondent’s vulnerability to landslides.

Table 8.48. Reasons of vulnerability or not being vulnerable to landslide hazards.

Table 8.49. Positive impacts of monsoon rain (% of households).

Table 8.50. Negative impacts of monsoon rain.

Table 8.51. Relocation during monsoon.

Table 8.52. NGO or local committee working on landslide issues.

Table 8.53. Emergency services during landslides (% of households).

Table 8.54. Comment on rescue effort.

Table 8.55. Compensation for the victims.

Table 8.56. Participated in disaster preparedness training or drill.

Table 8.57. Availability of landslide an early warning system.

Table 8.58. Getting meteorological information.

Table 8.59. Response after getting early warnings for landslides.

Table 8.60. Contact number or address of the nearest emergency services or relevant agencies.

Table 8.61. Landslide disaster risk reduction strategy.

Table 9.1. Indicator weights and scores (after scaling) based on household questionnaires.

Table 9.2. Indicator weights and scores based on PRA surveying.

Table 9.3. Vulnerability indices of different communities.

Table 9.4. Vulnerability indices of different communities considering various scenarios.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTER</td>
<td>Advanced Space-borne Thermal Emission and Reflection Radiometer</td>
</tr>
<tr>
<td>BARC</td>
<td>Bangladesh Agricultural Research Council</td>
</tr>
<tr>
<td>BBS</td>
<td>Bangladesh Bureau of Statistics</td>
</tr>
<tr>
<td>BMD</td>
<td>Bangladesh Meteorological Department</td>
</tr>
<tr>
<td>BUET-JIDPUS</td>
<td>Bangladesh University of Engineering and Technology-Japan Institute of Disaster Prevention and Urban Safety</td>
</tr>
<tr>
<td>CBDRR</td>
<td>Community-based Disaster Risk Reduction</td>
</tr>
<tr>
<td>CBM</td>
<td>Cox’s Bazar Municipality</td>
</tr>
<tr>
<td>CCA</td>
<td>Climate Change Adaptation</td>
</tr>
<tr>
<td>CCC</td>
<td>Chittagong City Corporation</td>
</tr>
<tr>
<td>CDA</td>
<td>Chittagong Development Authority</td>
</tr>
<tr>
<td>CDMP</td>
<td>Comprehensive Disaster Management Programme</td>
</tr>
<tr>
<td>CHD</td>
<td>Chittagong Hill Districts</td>
</tr>
<tr>
<td>CHT</td>
<td>Chittagong Hill Tracts</td>
</tr>
<tr>
<td>DAP</td>
<td>Detailed Area Plan</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital Elevation Model</td>
</tr>
<tr>
<td>DoE</td>
<td>Department of Environment</td>
</tr>
<tr>
<td>DRR</td>
<td>Disaster Risk Reduction</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GoB</td>
<td>Government of Bangladesh</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GSB</td>
<td>Geological Survey of Bangladesh</td>
</tr>
<tr>
<td>HKH</td>
<td>Hindu Kush Himalayan</td>
</tr>
<tr>
<td>ICIMOD</td>
<td>International Centre for Integrated Mountain Development</td>
</tr>
<tr>
<td>IFRC</td>
<td>International Federation of Red Cross and Red Crescent Societies</td>
</tr>
<tr>
<td>IHC</td>
<td>Indigenous Hill Community</td>
</tr>
<tr>
<td>ILO</td>
<td>International Labour Organization</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>LSM</td>
<td>Landslide Susceptibility Modelling</td>
</tr>
<tr>
<td>MSL</td>
<td>Mean Sea Level</td>
</tr>
<tr>
<td>NDVI</td>
<td>Normalized Difference Vegetation Index</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organizations</td>
</tr>
<tr>
<td>PRA</td>
<td>Participatory Rural Appraisal</td>
</tr>
<tr>
<td>RS</td>
<td>Remote Sensing</td>
</tr>
<tr>
<td>SDSM</td>
<td>Statistical Downscaling Model</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Science</td>
</tr>
<tr>
<td>SWOT</td>
<td>Strengths, Weaknesses, Opportunities, and Threats</td>
</tr>
<tr>
<td>UHC</td>
<td>Urbanized Hill Community</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNDP</td>
<td>United Nations Development Programme</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational, Scientific and Cultural Organization</td>
</tr>
<tr>
<td>UNICEF</td>
<td>United Nations Children's Fund</td>
</tr>
<tr>
<td>UNISDR</td>
<td>United Nations Office for Disaster Risk Reduction</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Transverse Mercator</td>
</tr>
<tr>
<td>WGS</td>
<td>World Geodetic System</td>
</tr>
</tbody>
</table>
Acknowledgements

Bayes Ahmed is a Commonwealth Scholar funded by the UK govt. First, I want to thank Professor Dr. David Alexander, my principal supervisor. My first communication with Professor David was on 23 November 2012, when he agreed to supervise me and supported my scholarship application. Since then we are working together. Professor David always embraced my ideas, and there was never a deadline pressure from him. I am so lucky to have a supervisor like him, and I truly believe that this thesis was not possible without his enduring guidance at every stage of my PhD journey. I am also grateful to my subsidiary supervisor Dr. Ilan Kelman. He assisted me in writing journal manuscripts and his comments helped to shape my PhD thesis. I am also thankful to my UCL Institute for Risk and Disaster Reduction (IRDR) mentors and colleagues for arranging additional funding for my PhD work and inspiring me to submit this thesis. Thanks to Professor Peter Sammonds, Dr. Rosanna Smith, Dr. Shamsudduha and my friends at UCL IRDR. This thesis is examined by Professor Ben Wisner (Internal) and Professor Thomas Glade (External).

Fieldwork was a vital part of my PhD thesis. I am grateful to my research assistants who helped me during those hardship days surveying in the remote and dangerous hills. The fieldwork was not possible without the help from numerous government organizations, landslide experts and university professors in Bangladesh. I truly acknowledge the local people and communities living on the hills – without their support I could not collect the much-needed primary field level data.

My parents sacrificed unconditionally for my success. My father – Md. Abdus Sattar – and my mother – Mrs. Suraiya Begum – never gave up; they supported my study and work. Conducting a PhD was a stressful journey, and I want to thank my wife – Samira Subah – for tolerating me during this time and giving me mental support. I also want to take this opportunity to thank my sister – Jarin Rosal, my in-laws, relatives and close friends. All of you have contributed to finish writing my PhD thesis. I studied in publicly funded schools, college and university in Bangladesh, and finally I want to thank the general people of Bangladesh for supporting my education with scholarships throughout my whole career. I am indebted to all of you!
Chapter 1

Introduction

1.1. Background

Disasters resulting from environmental hazards are prominent worldwide and are responsible for casualties, human displacement and property damage on a catastrophic scale. Around 1,388 disasters were reported worldwide from 2013–2016 and around 45% of all those disasters only occurred in Asia (Figure 1.1). In 2015, the United Nations (UN) registered 346 disasters worldwide that caused more than 22,000 deaths (approximately 72% occurred in Asia), affected almost 100 million people and the economic damage totalled approximately 66.5 billion US dollars (UNISDR/CRED 2016). The World Economic Forum has acknowledged extreme weather events, failure of climate-change mitigation and adaptation, and natural hazards triggering catastrophes as the top global risks for the next 10 years (World Economic Forum 2016).

Figure 1.1. Total number of natural hazard induced disasters between 1900 and 2016. Source: EM-DAT 2017, the OFDA/CRED International Disaster Database – www.emdat.be - Université Catholique de Louvain, Brussels, Belgium.
In Bangladesh, at least 22,500 people were reportedly killed and 130 million people were affected by disasters from 1995–2014 (World Disasters Report 2015). At present, Bangladesh is ranked as the world’s fifth most disaster-prone country (World Risk Report 2016; UNISDR/CRED 2016). Historically, disasters such as flooding, tropical cyclones, storm surges, and drought (Table 1.1) are dominant in Bangladesh. The recent trend of spontaneous urbanization in the hills (i.e. covering approximately 10% of the total land area of Bangladesh) and the resulting impact of landslides on hilly communities indicate a sharp escalation of landslide disaster risks in Bangladesh (Ahmed and Rubel 2013; BUET-JIDPUS 2015; Ahmed and Dewan 2017). Yet most hazard-related research for Bangladesh focuses on tropical cyclones (Ahmed et al. 2016; Mallick et al. 2017), flooding (Brouwer et al. 2007), and diseases (Ali et al. 2005; Hashizume et al. 2008), with some work on droughts (Brammer 1987) and earthquakes (Steckler et al. 2016), but with little research on landslides (Chisty 2014; Mia et al. 2016).

Table 1.1. Major disasters in Bangladesh (1900–2016).

<table>
<thead>
<tr>
<th>Disaster Type</th>
<th>Disaster Subtype</th>
<th>Events Count</th>
<th>Total Deaths</th>
<th>Total Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drought</td>
<td>Drought</td>
<td>7</td>
<td>1,900,018</td>
<td>25,002,000</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Ground movement</td>
<td>8</td>
<td>43</td>
<td>19,395</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Tsunami</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Epidemic</td>
<td>Parasitic disease</td>
<td>3</td>
<td>1,396</td>
<td>69,904</td>
</tr>
<tr>
<td>Epidemic</td>
<td>Viral disease</td>
<td>5</td>
<td>393,085</td>
<td>48,928</td>
</tr>
<tr>
<td>Epidemic</td>
<td>Bacterial disease</td>
<td>5</td>
<td>3,639</td>
<td>420,479</td>
</tr>
<tr>
<td>Extreme temperature</td>
<td>Heat wave</td>
<td>2</td>
<td>62</td>
<td>0</td>
</tr>
<tr>
<td>Extreme temperature</td>
<td>Cold wave</td>
<td>18</td>
<td>2,148</td>
<td>313,200</td>
</tr>
<tr>
<td>Extreme temperature</td>
<td>Severe winter</td>
<td>2</td>
<td>230</td>
<td>101,000</td>
</tr>
<tr>
<td>Flood</td>
<td>Riverine flood</td>
<td>45</td>
<td>7,278</td>
<td>138,558,760</td>
</tr>
<tr>
<td>Flood</td>
<td>Coastal flood</td>
<td>2</td>
<td>51</td>
<td>473,335</td>
</tr>
<tr>
<td>Flood</td>
<td>Flash flood</td>
<td>11</td>
<td>261</td>
<td>7,634,577</td>
</tr>
<tr>
<td>Landslide</td>
<td>Landslide</td>
<td>8</td>
<td>200</td>
<td>56,283</td>
</tr>
<tr>
<td>Storm</td>
<td>Tropical cyclone</td>
<td>88</td>
<td>626,935</td>
<td>78,965,167</td>
</tr>
<tr>
<td>Storm</td>
<td>Convective storm</td>
<td>37</td>
<td>2,108</td>
<td>1,470,091</td>
</tr>
<tr>
<td>Storm</td>
<td>Others</td>
<td>98</td>
<td>5,5621</td>
<td>182,336,367</td>
</tr>
</tbody>
</table>

Source: EM-DAT, the OFDA/CRED International Disaster Database – www.emdat.be - Université Catholique de Louvain, Brussels, Belgium.
Landslides are recognized as the third type of natural hazard induced disaster in terms of worldwide importance (van Westen et al., 2011). Landslides and associated slope failure phenomena (e.g. debris flows and mudslides) are a major hazard around the world and occur frequently due to rainfall in South Asia (Chapagai 2011). From 2004–2010, around 2,620 non-seismic and fatal landslides were recorded worldwide causing at least 32,322 deaths, with the majority of human losses occurring in Asia, especially along the Himalayan Arc (Petley 2012), although Asia is the most populous continent, so vulnerability plays a significant role in the landslide disasters experienced. On 22 July 2016, at least 154 people were killed and some 8.6 million people were affected by destructive floods and landslides caused by heavy rain in China (ReliefWeb 2016). The earthquakes that struck Nepal on 25 April 2015 caused at least 3,000 landslides and other mass movements (ICIMOD 2015). The Abe Barek landslide that hit Ago district, Afghanistan on 2 May 2014 was rainfall-induced and killed almost 2,700 people (Zhang et al. 2015). Similar to China, Nepal and Afghanistan, the south-eastern hilly region of Bangladesh (i.e. the study area) is a part of the Hindu Kush Himalayan (HKH) region and is highly vulnerable to landslides due to torrential rainfall and earthquakes.

Disasters are socially constructed. The steep-slopes or the hills are solely not responsible for landslides, but the people residing on the hills and their associated vulnerability cause landslide disasters (O'Keefe et al., 1976). Alexander (2016) has mentioned – “vulnerability is the main component of risk and may be more important than hazard or threat, as small hazards can cause big disasters if vulnerability is high (p. 254)”. Henceforth, it requires a holistic understanding of the various components of community vulnerability to reduce the landslide disaster risks and this is the primary motivation for this research.

1.2. Landslides in the Chittagong Hill Districts

Landslides are a common problem in the Chittagong hill districts (CHD) of Bangladesh (Figure 1.2a). CHD is broadly classified into two major groups (Figure 1.2b): urbanized hill districts (includes Chittagong and Cox’s Bazar) and indigenous hill districts (includes Bandarban, Khagrachari and Rangamati). Although landslide disasters were infrequent in densely populated Bangladesh
in the past, increasing human activities such as hill cutting for residential development has resulted in many landslides. This is particularly evident in the CHD, putting people and properties at risk. In recent years, devastating landslides have repeatedly hit CHD and caused casualties, damages and loss (Appendix–I). People particularly living on the steep slopes in the urbanized hill districts are highly vulnerable to landslide disasters (Ahmed 2015a,b). Most recently on 13 June 2017, rainfall triggered landslides caused at least 160 deaths in Rangamati, Chittagong and Bandarban districts. Thousands of families took refuge in different shelters. Till now, this is considered as the biggest landslide disaster in Bangladesh. Another notable landslide event occurred on 11 June 2007 that killed about 128 people in the vicinity of various hills because of landslides triggered by heavy rainfall (610 mm) for eight consecutive days (Ahmed and Dewan 2017).

![Figure 1.2. Location of (a) Chittagong hill districts in Bangladesh, and (b) the urbanized and indigenous hill districts in CHD. Source: Bayes Ahmed.](image)

The major landslides in the CHD were related to extreme rainfall intensities in a short period of time and much higher rainfall amount compared to the monthly average (CDMP-II 2010: 107; Khan et al. 2012). The Chittagong hill tracts consist of sequences of valleys and hills, coinciding, respectively, with synclines
and anticlines of late Tertiary age, generally elongated in a NNW–SSE trend. The main outcropping formations in Chittagong area are, from the older to the younger, Bubhan formation (Miocene), Boka Bil formation (Miocene- Pliocene), Tipam sandstone (Miocene- Pliocene), Girujan Clay (Neogene- Pleistocene), Dihing and Dupi Tila formation (Pliocene- Pleistocene). The hills in the CHD are mainly composed of unconsolidated or little-consolidated beds of sandstones, siltstones and shales, with minor beds of limestone and conglomerates (Chowdhury 2015; Brammer 1986: 10). The weakness of such formations, coupled with steep slopes and heavy rainfall (especially in the monsoon season, May–September), makes this area highly vulnerable to landslides (Ahmed 2015c). Increased population pressure, rapid urban growth, improper land use, weak governance, hill cutting, indiscriminate deforestation and agricultural practices are further aggravating the situation (Sarker and Rashid 2013; Ahmed and Dewan 2017). The changing global climate is also posing a serious threat in the region, and the likelihood of increased precipitation could worsen landslide hazards in CHD (IPCC 2014). CHD is also located in a high-risk earthquake area (Cummins 2007; Steckler et al. 2016) susceptible to cyclones or storms (Islam and Peterson 2009) zone, which could trigger more landslide events.

1.2.1. The Urbanized Hill Communities

Landslides are mostly associated with human activity and community vulnerability in the urban areas. For instance, a retention wall in Batali Hill area in Chittagong City Corporation (CCC) collapsed and fell down next to the nearby informal settlements on 1 July 2011 at 7 in the morning (Figure 1.3). The event was responsible for 19 human fatalities and several houses were destroyed. The CCC authority was in charge of constructing the retention wall (which was approximately 10 m high and 50 m long) to protect the surrounding houses and the road above it from potential landslides. Unfortunately, even though it was supposed to save lives and protect property, a part of the retention wall (10.5 metres wide) collapsed and caused a devastating landslide. The triggering factors of this landslide were several days of heavy rainfall, overexploited soil-strength and low quality of construction works. As a consequence, four concerned CCC engineers were temporarily suspended. It
represents the interaction of both the physical and social aspects (human activity) of vulnerability in creating a disaster. Accordingly, landslides in the CHD can be considered as socio-natural hazards (UNISDR 2017).

![Figure 1.3](image)

Figure 1.3. A fatal landslide event in Batali Hill, CCC on 1 July 2011. (a, b) – top view and (c, d) – bottom view. Source: Department of Environment, Chittagong, Bangladesh; July 2014.

After this incident, the nearby informal houses were evacuated, but the residents came back after several months and started to live in the same disaster-hit area (Figure 1.4). The construction of the retention wall was suspended until 2013. Thereafter, in 2014, the authorities started erecting it again with design modifications. The new design integrated a drainage network along the roadside and additional reinforcing pillars at the back of the walls to prevent future landslides (Figure 1.5). Considering the degraded soil condition, steep slopes, high amounts of rainfall in the monsoon season and the
surrounding exposed households, this place still poses a serious threat of landslides. This is a typical scenario of community-level landslide vulnerability in the urbanized hill districts of Bangladesh.

Figure 1.4. Houses rebuilt in the same hazardous area after the 1 July 2011 landslide in Chittagong. Source: Bayes Ahmed, September 2013.

Figure 1.5. Reconstruction of the retention wall in Batali Hill, Chittagong. (b, c, d) top view and (a, e) bottom view. Source: Bayes Ahmed, field visit, September 2013 and July 2014.
Figure 1.6 depicts how the people of Motijharna, a residential area surrounding a hill in CCC, are living with the risks of landslides.

![Landslide vulnerable areas in Motijharna, CCC. (a, b) N-S view, and (c, d) S-N view. Source: Bayes Ahmed, field visit, September 2013.](image)

The loss and damage due to landslides are also evident in Cox's Bazar Municipality (CBM), Bangladesh. The first fatal landslide event (with 6 casualties) in CBM was recorded on 16 June 2003. A series of other rainfall-triggered landslides killed at least 47 people in CBM on 15 June 2010 (CDMP-II 2012). The arrival of a large number of marginalized people from other parts of Bangladesh is evident in CBM. The concerned authorities are failing to offer them cheap and safer accommodation on flat lands with necessary community facilities. To support their livelihoods, the marginalized people illegally cut the hills for the development of residential houses (Figure 1.7) and are consequently making themselves vulnerable to landslides (Ahmed 2015b).

1.2.2. Landslides and Institutional Aspects

There is no strict hill management system in the urbanized hill districts. This has encouraged many informal settlements to grow on the landslide-prone hill slopes in CCC. These settlements are considered as illegal by the formal
authorities, while the settlers claim themselves to be legal occupants or owners of the hills. An acute land tenure conflict has been ongoing among the public agencies, settlers, powerful elites and the local community representatives over the past few decades. This kind of contradiction has undermined the institutional arrangement for reducing landslide risk in the urbanized hilly areas. (Ahmed and Rubel 2013).

![Figure 1.7](image1.jpg)

Figure 1.7. Systematic hill cutting to build residential houses in Cox’s Bazar Municipality (CBM). Source: Bayes Ahmed, fieldwork, August to October 2014.

The Chittagong Department of Environment (DoE) is primarily responsible for protecting and managing the hills. On 13 March 2008, after the 11 June 2007 catastrophic landslide event in CCC, the DoE submitted an investigation report to the Government of Bangladesh (GoB). The report depicted a sequential flowchart of the causative factors of landslides (Figure 1.8). Not surprisingly, the components of landslides as identified by the DoE were largely focused on physical or hazard related aspects (i.e. geology, soil, and rainfall etc.). The human-induced factors were only limited to hill cutting and deforestation. The other essential components of community vulnerability such as social, economic, cultural and institutional dimensions were clearly missing (Figure 1.8).
The Building Construction (Amendment) Ordinance, 1990 (section 3C.1) states that hill cutting is allowed only for the construction of dwelling houses without causing any major damage to the hill, especially if there is any issue of major public interest (GoB 1990: 86). According to the Bangladesh Environment Conservation (Amended) Act 2010 (section 6B under Act No. 1 of 1995), it is prohibited to cut or raze hills by a person or government institution or semi-government or autonomous organization or occupied by personal acquisition unless in the case of necessity of national interest (GoB 2010: 9126). It clearly puts restriction on hill cutting. These two coexisting hill protection related (by-) laws are contradictory and have some grey-areas in defining what is national or public interest or what it means by damage to hills. The Chittagong

Figure 1.8. Flowchart showing causes of landslides in Chittagong as prepared by the Department of Environment, Chittagong Division, March 2008.
Development Authority (CDA) prepared the Chittagong Metropolitan Master Plan (1995-2015), which was officially approved by the GoB in 1999. The master plan consists of a structure plan, urban area plan, and a detailed area plan (DAP). The plans have detailed and strict land use guidelines for both the public and private sector development. The following guidelines are clearly mentioned in the DAP to protect the hills in CCC (DAP 2009: 3-27 and 3-29):

- All types of hill cutting should be stopped. In the case of an absolutely necessary government project for public interest, it can be allowed after proper environmental impact assessment, public hearing, expert opinion and law clearance etc.
- The areas already affected by hill cutting should not be allowed for development, rather it should be turned to green belts and the levelled land should be covered with forest at the cost of the land grabbers.
- All the slums and squatters should be gradually removed and the inhabitants should be rehabilitated from the hilltops, slopes and valleys.
- The existing hills have been mapped in the DAP, but the respective authorities should survey and update the information of the hills regularly.

Despite having all the gazetted rules and regulations to protect the hills and ensure safety of lives and property, a group of people are taking advantage of the inconsistencies in the by-laws and violating the existing laws, and are building housing complexes by cutting the hills. For example, in 2008, there was not a single high-rise building in the Motijharna area. Then, within the next six years (in 2014), two five-storey buildings were constructed by cutting the hills (Figure 1.9). It clearly depicts how institutional weaknesses are making people and communities more vulnerable to landslides. The people living with landslide risks in the urbanized hills mostly belong to marginalized communities, who are quite new in dealing with the hilly environment. Their monthly income is much less than the national average and many of them are environmental refugees or displaced due to minority attack or political violence or are victims of other disasters. Yet the government has no plan to provide reasonable accommodation for the disadvantaged people who live on the dangerous hillslopes (Sarker and Rashid 2013; Ahmed and Rubel 2013).
Figure 1.9. Landuse change in Motijharna, Chittagong. Source: (a) DoE, Chittagong; and (b) Bayes Ahmed, September 2014.

The urbanized hill people neither are capable of making their houses landslide-resistant, nor are they aware of using indigenous knowledge for building safer houses on the hills. They are also culturally less aware of how to utilize the surrounding hills and forests in a sustainable way. It makes them both socio-economically and culturally vulnerable to landslides. The concerned authorities have failed to bring social justice to address community level vulnerability and they are more decisive about the geological and engineering solutions to landslides. The key informants were found to be well aware of the landslide disaster situation in the CHD and they were in full support of implementing the master plans and hill cutting related regulations (BUET–JIDPUS 2015). The assistant commissioner (AC) of Land in Chittagong circle took initiatives to evacuate the people living on the dangerous hills in the monsoon of 2014 (Figure 1.10). After a few weeks, the inhabitants came back (in some cases new occupants were rented) and started living on the same place.
Figure 1.10. A cluster of highly vulnerable informal settlements at the top of Motijharna community was destroyed by the AC land office, Chittagong. Source: Bayes Ahmed, fieldwork, July 2014.

A Web-GIS based and a community based landslide early warning system was also introduced in CCC (BUET-JIDPUS 2015) and CBM (CDMP-II 2012) respectively, but the attempts failed, as there was no interest among the urbanized hill communities and respective authorities. It proves institutional interventions such as preparing land use plans, restricting settlement on the hills and enforcing hill cutting law are not enough to address the landslide problems in urban areas.

In a nutshell, the influx of urban migrants, lack of cultural knowledge in dealing with hill environments, socio-economic vulnerability and in some cases institutional detachment are making the landslide disaster scenario worse in the urbanized hilly areas in CHD. To address these issues, this study will focus on the community vulnerability aspect to identify the root causes and attraction forces for residing on the hill slopes, and to analyse peoples’ risk perception.
1.2.3. The Indigenous Hill Communities

In contrast to the situation described in the previous section, the impacts of landslides are much smaller among the indigenous hill communities (IHC). The IHC have lived on the hills (Figure 1.11) since time immemorial and they consider the hills as their ancestors' land (Roy 2000). The IHC do not enjoy formal electricity and water supply or other basic utility and community facilities, yet still they are resilient to landslides. The urbanized hill communities (UHC) mostly use the hills for temporary accommodation purposes and they are more concerned about residing close to a city centre. In contrast, the IHC treat the hills as a sacred place and the hills are part of their cultural identity (Roy 2000). They also have the necessary indigenous knowledge, inherited through generations, to deal with the hills, the natural hazards and the surrounds in a sustainable way. For example, they build houses in a traditional way by preserving the hillslopes, which ensures adequate defence against slope failures. This research studies the IHC in order to understand the relationships between culture and landslide disaster risk reduction (DRR) in Bangladesh.

Figure 1.11. Indigenous hill communities in Bandarban district, Bangladesh. Source: Bayes Ahmed, field visit, 2013–14.

1.3. Research Hypothesis

It is apparent that landslide disasters in the urbanized hilly areas in the CHD are triggered by a combination of physical, social, economic, ecological, institutional and cultural components. In order to identify, address and understand the root causes of landslides in Bangladesh, this research will focus on these multi-dimensional facets of vulnerability at the community level.
In this research, two different groups of communities have been identified in the CHD namely, the urbanized hill communities (UHC) and the indigenous hill communities (IHC). It is assumed that the IHC have a strong perception of landslide risk (e.g. indigenous knowledge), cultural beliefs (e.g. a sense of belonging to nature) and coping strategies (e.g. cultivation methods, building materials, architecture and the land tenure system). The unique characteristics that exist within the IHC point towards landslide disaster risk reduction. In general, the UHC indiscriminately destroy the hills. They lack local knowledge and fail to adapt to the hilly environment. Even though they enjoy higher economic status, utility facilities, community services, landslide shelters and early warnings, the UHC tend to be more vulnerable to landslides. Now, on the basis of the considerations reported above (to be elaborated and expanded more throughout the thesis), the following hypothesis will be tested in this research:

Hypothesis: The indigenous tribal communities are resilient to landslides in comparison to the urbanized hill communities in the Chittagong Hill Districts.

Context is important in DRR studies. Vulnerability can respond to particular contexts and cultural environments (Ayala 2002; Füssel 2007). The context of this research is set to analyse the communities living on the hills of CHD in Bangladesh and the physical, social, economic, ecological, institutional and cultural aspects of vulnerability at community level will be analysed.

1.4. Research Aim and Objective

The aim of this research is to understand the root causes of the vulnerability of the communities living with landslide risks in the Chittagong Hill Districts of Bangladesh. Within this context, the specific objective is to answer the following research questions:

(a) Who are vulnerable to landslides in the Chittagong hill districts?
(b) What makes the communities vulnerable or resilient to landslides?
(c) Why are people living on the risky hill slopes?
(d) Can the cultural dimension of community vulnerability override the economic dimension?
(e) Is it possible to incorporate cultural knowledge into landslide DRR?
In recent years, the paradigm of DRR studies has moved from focusing only on natural hazard-related engineering and technical solutions to giving importance to societal issues (Pelling 2003; Wisner et al. 2004). It is argued that vulnerability is related to poverty (Schneiderbauer and Ehrlich 2006), but meticulous emphasis should be given to cross-cultural vulnerability assessment and incorporating indigenous knowledge in DRR (Alexander 2000; UNISDR 2008; Hewitt 2009; Mercer et al. 2010). This thesis concentrates on the cultural make up of a community and its risk perception concerning landslides.

Community vulnerability to environmental hazards can have multiple dimensions such as economic, social, institutional, cultural, and ecological etc. This thesis argues that a community with inherited indigenous knowledge (i.e. cultural community) can tackle the adverse impacts of landslides than the urbanized hill communities who enjoy more economic and social benefits.

1.5. Originality and New Knowledge

Bangladesh is one of the most disaster-prone countries of the world. Landslide disaster is an emerging threat at the national scale fuelled by the impacts of increased frequency of extreme precipitation, population pressure and higher density in flat lands, high rates of urbanization and deforestation, and lack of cultural knowledge (Kelman 2015; Ahmed and Dewan 2017). Yet there has been limited research activity on landslides in Bangladesh. Considering the local context and limitations, conducting research on landslide DRR issues in Bangladesh is imperative and timely.

This research is based on primary data collection at community level, and all the analytical figures or diagrams and tables are original. The research activity included reconnaissance surveying, the construction of landslide inventories (Appendix-II), landslide susceptibility mapping, detailed community-based questionnaires (Appendix-III), stakeholder and expert opinion surveys (Appendix-IV), and participatory surveying. To achieve the aims and objectives of the research and answer the research questions, the work incorporates both qualitative (participatory) and quantitative (questionnaire) methods. The hypothesis testing and answers to the research questions will allow one to
compare the socio-economic and socio-cultural vulnerability of the two different groups (UHC vs. IHC) that live on the landslide-prone hilly areas in the Chittagong Hill Districts. This kind of research has never been conducted in Bangladesh, and a comparison of the urbanized and indigenous communities living in the same regional or environmental setup is unique.

At the local scale, the outcome of this research allows one to understand how a particular community deals with extreme hazards in the hilly environment. At the national scale, this research promotes awareness of landslide studies by incorporating landslide hazard maps into the gazetted urban master plans and traditional cultural knowledge in landslide DRR initiatives. In order to control hill cutting and deforestation, it encourages the adoption of stricter land-use regulations. At the global and regional scales, this research helps one to understand the root causes of disasters and the characteristics that make a particular community vulnerable or resilient. It is intended that the attempts undertaken in this research to scrutinize the various components of landslide disasters will contribute to the generation of new knowledge by advancing the current trends of DRR studies on community vulnerability and resilience, and cultures and disasters.

1.6. Structure of the Thesis

Figure 1.12 illustrates the structure and inter-connectivity of different chapters of this thesis. Chapter 1 of this thesis presents the background of landslide disasters from global to local scale and the prerequisite of conducting a landslide DRR study in Bangladesh. The geographic focus is identified as the Chittagong hill districts (CHD). Chapter 1 also outlines the research aim, objective and research questions. Chapter 2 is a literature review that explains the DRR terminologies used, examines the various frameworks, social levels and dimensions of vulnerability, and the significance of culture and indigenous knowledge, a mixed methods research and community participatory approach in DRR studies. Chapter 3 sets the fundamental methodology of this thesis. Chapter 4 describes the various aspects related to landslides in Chittagong hill districts.
Chapter 5, 6 and 7 describe the Chittagong city corporation, Cox’s Bazar municipality, and the indigenous hill communities respectively. They cover the community selection procedure and the detailed results from the community participatory surveying. Chapter 8 presents the results obtained from household
questionnaire surveys of all the communities. In order to understand the similarities and differences, it compares the results. Chapter 9 applies a method for combining quantitative and qualitative data to assess and compare the overall community vulnerability. Chapter 10 is the conclusion. It presents the answers to the research questions, justifies the results and explains the root-causes of community vulnerability to landslides in Bangladesh. It ends by explaining the achievements and contribution of this study, overall landslide vulnerability scenario in the CHD, and future research and policy guidelines or recommendations to accelerate landslide DRR at local level in Bangladesh.

In summary, landslides are a serious threat for the millions of people living in the hilly region of CHD considering the rate of population growth and urbanization, availability of flat lands and resources for the marginalized people, extensive level of hill cutting and deforestation, absence of land use plan integration in DRR; politics, policy and governance, and absence of cultural knowledge in dealing with the extreme climate and natural hazards in the hills. With this background, conducting research on landslides in CHD by focusing on community vulnerability sets the agenda for the first time in Bangladesh.

In the next chapter (Chapter 2), the theoretical framework of this thesis is discussed.

The full text is not uploaded due to copyright reasons. The hard copy is available at the UCL Library. The complete PhD thesis in PDF file will be uploaded in ResearchGate in September 2019. Please email me [bayes.ahmed@ucl.ac.uk] for further queries.
References

BUET-JIDPUS. 2015. Developing a Dynamic Web-GIS based Early Warning System for the Communities Living with Landslide Risks in Chittagong Metropolitan Area, Bangladesh. BUET-Japan Institute of Disaster Prevention and Urban Safety (BUET-JIDPUS), Bangladesh University of Engineering

CDMP-II. 2012. *Landslide Inventory and Land-use Mapping, DEM Preparation, Precipitation Threshold Value and Establishment of Early Warning Devices*. Comprehensive Disaster Management Programme-II (CDMP-II), Ministry of Food and Disaster Management, Disaster Management and Relief Division, Government of the People’s Republic of Bangladesh.

Chapagai, D., 2011. Landslide problem of South Asia and vis-a-vis Global Scenario. SAARC training program on landslide risk management in South Asia, SAARC Disaster Management Centre (SDMC), New Delhi.

Transportation Research Board, Special Report 247, Washington D.C., USA, pp. 36-75.

measure livelihood vulnerability to change in the Hindu Kush Himalayas. *Climate and Development, 9*(2), pp.124-140.

Pawluszek, K. and Borkowski, A., Impact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, Poland. *Natural Hazards*, pp.1-34.

World Disasters Report 2015. *Focus on local actors, the key to humanitarian effectiveness*. International Federation of Red Cross and Red Crescent Societies (IFRC), Geneva, Switzerland.

The full text is not uploaded due to copyright reasons. The hard copy is available at the UCL Library. The complete PhD thesis in PDF file will be uploaded in ResearchGate in September 2019. Please email me [bayes.ahmed@ucl.ac.uk] for further queries.